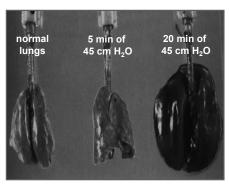

Mechanical Ventilation of the Patient with ARDS

Dean Hess, PhD, RRT, FAARC
Assistant Professor of Anesthesia
Harvard Medical School
Assistant Director of Respiratory Care
Massachusetts General Hospital

ARDS/ALI

- Acute onset of respiratory distress
- Hypoxemia: $PaO_2/FIO_2 \le 200$

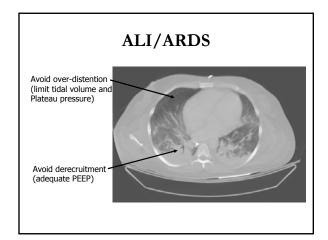
 $PaO_2/FIO_2 \le 300$ for ALI

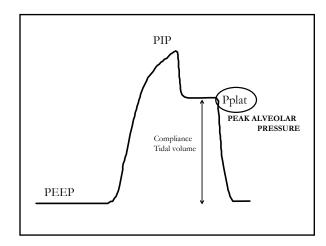

- Bilateral consolidations on chest radiograph
- Absence of cardiogenic pulmonary edema

Common Causes of ARDS

- Direct lung injury (pulmonary ARDS)
 aspiration and other chemical pneumonitis

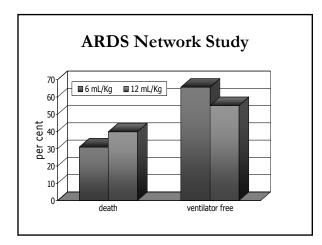
 - infectious pneumonia
 - trauma: lung contusion, penetrating chest injury
 - near drowing
 - fat embolism
- Distant injury (nonpulmonary ARDS)
 - inflammation; sepsis syndrome multiple trauma, burns


 - shock, hypoperfusion
 - acute pancreatitis



Dreyfuss, Am J Respir Crit Care Med 1998;157:294-323

ARDS



ARDS Network Study

- 861 patients with ALI/ARDS at 10 centers
- Patients randomized to tidal volumes of 12 mL/kg or 6 mL/kg (volume-control, assistcontrol, Pplat ≤ 30 cm H₂O)
- 25% reduction in mortality in patients receiving smaller tidal volume
- Number-needed-to-treat: 12 patients

N Engl J Med 2000; 342:1301-1308

ARDS Network Study

	6 mL/kg	12 mL/kg
PaCO_2	43 ± 12	36 ± 9
Respiratory rate	30 ± 7	17 ± 7
$\mathrm{PaO_2}/\mathrm{FIO_2}$	160 ± 68	177 ± 81
Plateau pressure	26 ± 7	34 ± 9
PEEP	9.2 ± 3.6	8.6 ± 4.2

N Engl J Med 2000; 342:1301-1308

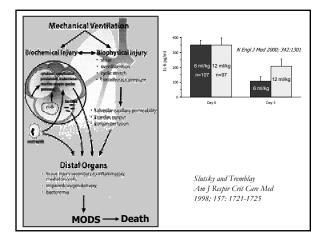
ARDSnet Protocol

- Calculate predicted body weight (PBW) Male= 50 + 2.3 [height (inches) - 60] Female= 45.5 + 2.3 [height (inches) - 60]
- Mode: volume assist-control
- Change rate to adjust minute ventilation (not >35/min); pH goal: 7.30-7.45
- Plateau pressure goal: $\leq 30 \text{ cmH}_2\text{O}$
- PaO₂ goal: 55-80 mm Hg or SpO₂ 88-95%; use FiO₂/PEEP combinations to achieve oxygenation goal:

N Engl J Med 2000; 342:1301-1308

ARDSnet and Auto-PEEP

- ARDSnet did not report auto-PEEP
- Several studies have reported auto-PEEP with the respiratory rates used in ARDSnet


Richard et al, Intensive Care Med 2002;28:1078 de Durante et al, Am J Respir Crit Care Med 2002;165:1271

- When respiratory rate is increased, inspiratory time must be decreased (mean airway pressure does not change if I:E maintained constant)
- Due to lower tidal volume and increased elastic recoil (low compliance), risk of auto-PEEP is low
- Prudent to monitor auto-PEEP when ARDSnet strategy is used

ARDSnet and Long-Term Outcomes

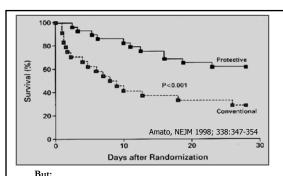
- $\blacksquare \ 120$ patients randomized to low V_T or high V_T
 - 25% mortality with low tidal volume
 - 45% mortality with high tidal volume
- ≈ 20% of patients had restrictive defect and ≈ 20% had obstructive defect 1 yr after recovery
- About 80% had D_ICO reduction 1 yr after recovery
- Standardized tested showed health-related quality of life lower than normal
- No difference in long-term outcomes between tidal volume groups

Orme, Am J Respir Crit Care Med 2003;167:690

Permissive Hypercapnia

- Low V_T (6 mL/kg) to prevent over-distention
 - Increase respiratory rate to avoid hypercapnia
 - PaCO2 allowed to rise
- Usually well tolerated???
- May be beneficial "therapeutic hypercapnia"???? Laffey & Kavanagh, Lancet 1999; 9186:1283
- Potential problems: tissue acidosis, autonomic effects, CNS effects, circulatory effects

JAMA 1994;272:957-982 AJRCCM 1994;150:870-874 AJRCCM 1994;150:1722-1737


What About Non-ARDS?

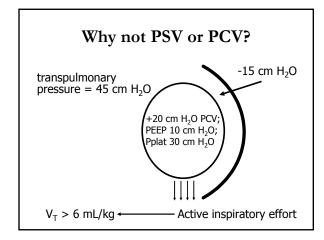
- COPD: issue is air-trapping and auto-PEEP
- Patients with normal lung function; overdose, post-operative???

Open Lung Approach & Low Distending Pressure for ARDS

- Conventional approach: V_T 12 mL/kg, volume control, PaCO₂ 25 - 38 mm Hg, PEEP as necessary to keep FIO₂ < 0.60</p>
- New approach: V_T < 6 mL/kg, pressure ventilation, PIP < 40 cm H₂O, permissive hypercapnia, high PEEP, recruitment maneuver

Amato, AJRCCM 1995;152:1835-1846 Amato, NEJM 1998; 338:347-354

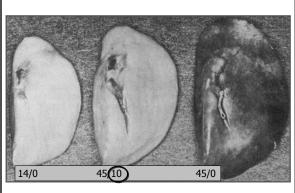
Multiple interventions
Single center
High mortality in control group
Small sample size


Pressure-Controlled Ventilation

Greatest lung strain with PC-IRV (I:E 2:1), least with PC (I:E 1:2); VC (I:E 1:2 intermediate)

Edibam et al, Am J Respir Crit Care Med 2003;167:702

- No difference in gas exchange, hemodynamics, and plateau pressure
- Did not evaluate VC with descending ramp
- Mean tidal volume 0.6 L (≈10 mL/kg? not reported)
- Differences between groups were small and clinical importance unknown
- No difference in outcome with ARDS patients randomized to PC (n=37) or VC (n=42)


Esteban et al, Chest 2000;117:1690-1696

ARDS Network Study

- 800 patients with ALI/ARDS at 10 clinical centers throughout the United States
- Patients randomized to tidal volumes of 12 mL/kg or 6 mL/kg (<u>volume-control</u>, assist-control, Pplat ≤ 30 cm H2O)
- 25% reduction in mortality in patients receiving smaller tidal volume
- Number-needed-to-treat: 12 patients with ALI/ARDS

N Engl J Med 2000; 342:1301-1308

Webb and Tierney, Am Rev Respir Dis 1974; 110:556-565

How to Select PEEP?

■ PEEP/FIO₂ relationship to maintain adequate PaO₂/SpO₂ (ARDSnet)

 $PaO_2 \ goal: 55 - 80 \ mm \ Hg \ or \ SpO_2 \ 88 - 95\%; \ use \ FIO_2/PEEP$ combinations to achieve oxygenation goal: $FIO_2 = 0.3 \quad 0.4 \quad 0.4 \quad 0.5 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.7 \quad 0.7 \quad 0.8 \quad 0.9 \quad 0.9 \quad 0.9 \quad 1.0$ $PEEP = 5 \quad 5 \quad 8 \quad 8 \quad 10 \quad 10 \quad 10 \quad 12 \quad 14 \quad 14 \quad 14 \quad 16 \quad 18 \quad 20-24$

■ Maintain maximal lung recruitment (open lung approach): highest PaO₂ for lowest FIO₂

Open Lung Approach & Low Distending Pressure for ARDS

- Conventional approach: V_T 12 mL/kg, volume control, PaCO₂ 25 - 38 mm Hg, PEEP as necessary to keep FIO₂ < 0.60</p>
- New approach: V_T < 6 mL/kg, pressure ventilation, PIP < 40 cm H₂O, permissive hypercapnia, high PEEP, recruitment maneuver

Amato, AJRCCM 1995;152:1835-1846 Amato, NEJM 1998; 338:347-354

ALVEOLI

(Assessment of Low tidal Yolume and elevated End-expiratory volume to Obviate Lung Injury)

- Compared two PEEP levels
- PEEP separation \approx 6 cm H_2O (9 \pm 3.5 vs. 14.6 \pm 3.6 cm H_2O)
- Stopped early at 550 patients for futility
- No safety concerns

Best PEEP

- The "best PEEP" for recruitment may not be the "best PEEP" for the patient
 - "Best PEEP" for recruitment may not be "Best PEEP" to avoid over-distention
 - "Best PEEP" for the lungs may not be the "Best PEEP" for the patient
 - Hemodynamic effects
 - Renal perfusion effects
 - Cerebral perfusion effects

When all else fails

- Recruitment maneuvers
- Prone
- Inhaled nitric oxide
- High frequency oscillation

Unproven therapies; may improve gas exchange but effect on mortality unknown

Physiologic Benefits (PaO₂) vs Patient-Important Outcomes (Survival)

 For ARDS, inhaled nitric oxide improves PaO₂, but not mortality

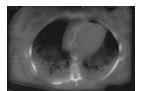
(Taylor et al, JAMA 2004;291:1603)

- High tidal volumes in patients with ARDS improves PaO₂, but mortality is lower for small tidal volumes (ARDSnet, N Engl J Med 2000; 342:1301)
- For ARDS, prone position improves PaO₂, but not

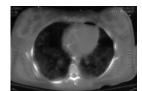
(Gattinoni, N Engl J Med 2001;345:568)

_	

Open Lung Approach & Low Distending Pressure for ARDS


- Conventional approach: V_T 12 mL/kg, volume control, $PaCO_2$ 25 38 mm Hg, PEEP as necessary to keep $FIO_2 < 0.60$
- New approach: V_T < 6 mL/kg, pressure ventilation, PIP < 40 cm H₂O, permissive hypercapnia, high PEEP, recruitment maneuver

Amato, AJRCCM 1995;152:1835-1846 Amato, NEJM 1998; 338:347-354

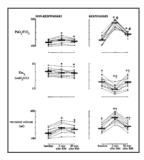

Recruitment Maneuver: Definition

Sustained increase in airway pressure with the goal to open collapsed lung tissue, after which PEEP is applied sufficient to keep the lungs open

CPAP 40 cm $\rm H_2O$ for 40 seconds

After recruitment

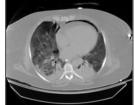
Medoff et al, Crit Care Med 2000; 28:1210

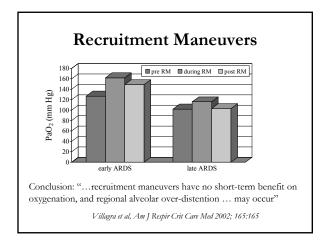

ARDSnet Recruitment

- Multi-center crossover physiologic study of recruitment maneuver versus sham
- Recruitment maneuver: CPAP 35 to 45 cm H₂O for 30 s
- Changes is SpO₂ and FIO₂/PEEP step change recorded
- Response to recruitment maneuvers highly variable
- No significant difference in oxygenation for recruitment maneuvers and sham

Step Change	After RM	After Shan	
Improved	25	17	
Unchanged	41	49	
Worse	7	9	

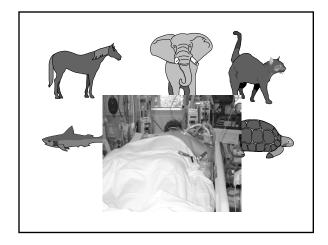
Crit Care Med 2003; 31:2592-2597

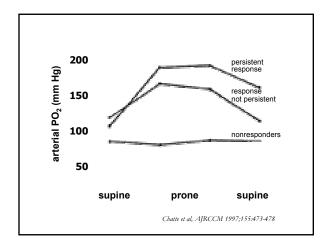

Recruitment Maneuvers in ARDS



Grasso, Anesthesiology 2002; 96:795

Are Recruitment Maneuvers Safe?




A Recruitment Maneuver?

Severe abdominal distention After 6 L abdominal fluid tap

Prone and Patient Outcome

- 304 patients randomized to prone versus supine
- Minimum 6 hrs per day in prone position
- No difference in complications for prone versus supine
- No overall mortality benefit for prone, but posthoc analysis suggested potential benefit for the sickest patients

Gattinoni et al, N Engl J Med 2001;345:568

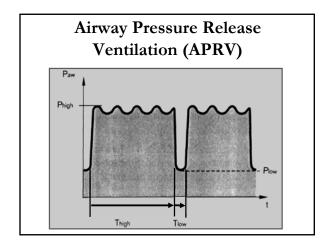
Post-Hoc Analysis Supine Prone *pro05 to Supine *pro0 S to Supine *proc Supin

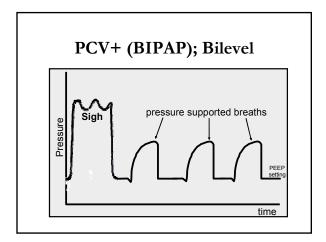
NO: ARDS Applications

- Phase 2 study: With 5 ppm inhaled NO, increased number of days alive and off ventilator at day 28 (post-hoc) (Dellinger et al, Crit Care Med 1998;26:15)
- Phase 3 American trial: inhaled NO did not lead to a sustained improvement in PaO2 and did not affect outcome (Γaylor et al, JAMA 2004;291:1603)
- Phase 3 European trial: inhaled NO did not improve survival (Lundin et al, Intensive Care Med 1999;25:911)
- NO did not lead to a sustained improvement in PaO2 (Michael et al, Am J Respir Crit Care Med 1998; 157:1380)
- NO improved gas exchange, but did not improve mortality (Troncy et al, Am J Respir Crit Care Med 1998; 157:1483)

Airway Pressure-Release Ventilation (APRV)

- Produces alveolar ventilation as an adjunct to CPAP
- Allows spontaneous breathing at any time during the ventilator cycle
- Minimizes hazards of high airway pressure??
- Decreased need for sedation??
- Improved ventilation of dependant lung zones?


Sydow et al, AJRCCM 1994;149:1550 Putensen et al, AJRCCM 1999;159:1241 Putensen et al, AJRCCM 2001;164:43


Spontaneous Breathing

- During spontaneous breathing, the dependent part of the diaphragm has the greatest displacement
- Paralysis causes a cephalad shift of the endexpiratory position of the diaphragm (predominantly in the dependant region) and reverses the pattern of diaphragmatic displacement

Froese, Anesthesiology 1974;41:242

High Frequency Oscillation ■ High PEEP, avoid overdistention, clear CO₂ ■ Case series in adults have reported efficacy (improved oxygenation and ventilation with lower FIO₂) ■ Technique appears safe in adults Forte et al, Crit Care Med 1997; 25:937 Mebta et al, Crit Care Med 2001; 29:1360 Derdak et al, AJRCCM 2002; 166:801

Are New Ventilator			
Modes Useful in			
ARDS?			

The	Evid	lence	

Use Ventilation Strategies That

Are Effective And

Do No Harm